Engineering Nanowire n-MOSFETs at L-g < 8 nm
نویسندگان
چکیده
As metal-oxide-semiconductor field-effect transistors (MOSFETs) channel lengths (L g) are scaled to lengths shorter than L g < 8 nm source-drain tunneling starts to become a major performance limiting factor. In this scenario, a heavier transport mass can be used to limit source-drain (S-D) tunneling. Taking InAs and Si as examples, it is shown that different heavier transport masses can be engineered using strain and crystal-orientation engineering. Full-band extended device atomistic quantum transport simulations are performed for nanowire MOSFETs at L g < 8 nm in both ballistic and incoherent scattering regimes. In conclusion, a heavier transport mass can indeed be advantageous in improving ON-state currents in ultrascaled nanowire MOSFETs.
منابع مشابه
Gate-All-Around Silicon Nanowire MOSFETs: Top-down Fabrication and Transport Enhancement Techniques
Scaling MOSFETs beyond 15 nm gate lengths is extremely challenging using a planar device architecture due to the stringent criteria required for the transistor switching. The top-down fabricated, gate-all-around architecture with a Si nanowire channel is a promising candidate for future technology generations. The gate-all-around geometry enhances the electrostatic control and hence gate length...
متن کاملSize-Dependent-Transport Study of In0.53Ga0.47As Gate-All-Around Nanowire MOSFETs: Impact of Quantum Confinement and Volume Inversion
InGaAs gate-all-around nanowire MOSFETs with channel length down to 50 nm have been experimentally demonstrated by a top-down approach. The nanowire size-dependent transport properties have been systematically investigated. It is found that reducing nanowire dimension leads to higher oncurrent, transconductance, and effective mobility due to stronger quantum confinement and the volume-inversion...
متن کاملTowards Sub-10 nm Diameter III-V Vertical Nanowire Transistors
Towards the demonstration of sub-10 nm III-V vertical fin and nanowire MOSFETs, a novel alcohol-based digital-etch technology has been developed. The new technique minimizes the mechanical forces exerted on vertical nanowire structures. A consistent 1 nm/cycle etching rate on both InGaAs and InGaSb-based heterostructures has been obtained. This is the first demonstration of digital etch on anti...
متن کاملSub-100nm Non-planar 3D InGaAs MOSFETs: Fabrication and Characterization
InGaAs MOSFETs have been considered promising candidate for post-Si logic devices beyond 14nm technology node. To meet the increasing demand in electrostatic control at sub-100nm channel lengths, non-planar 3D structures have been introduced to the fabrication of InGaAs MOSFETs. In this paper, the fabrication and characterization of various non-planar 3D InGaAs MOSFETs have been demonstrated an...
متن کاملSuperlattice - Source Nanowire FET with Steep Subthreshold Characteristics
The non-scalable room temperature 60 mV/dec subthreshold swing of a conventional MOSFET is a fundamental limit to the continuation of transistor power scaling. In order to further reduce transistor power consumption and transistor footprint, new subthreshold transport mechanisms other than thermionic emission over an energy barrier are required. In this thesis, we devote our efforts towards the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014